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We investigate the control of state-selective population transfer in the THz spectral range generated by sub-
one-cycle pulse excitation. To this end we developed a zero-net-force modification of the optimal control
algorithm which allows us to extend the algorithm into the ultrashort pulse domain. By combining the analysis
of the control landscapes and that of optimal control theory, we were able to formulate a general mechanism
suitable for laser control by ultrashort pulses. The strategy consists of a superposition of twoπ-pulses with
carrier envelope phases ofφ ) π/2. The first pulse is effectively in resonance with the targeted transition,
while the second one, fired at around the minimum of the first pulse second lobe, removes leaking to the
dipole-coupled background state. To compensate for the pulses ultrashort duration, the carrier frequencies of
both pulses are red-shifted from the spectroscopic resonance.

I. Introduction

Few-cycle laser pulses are powerful tools for studying
fundamental aspects of light-matter interaction.1-4 The reason
for their effectiveness lies in the fact that the dynamics of the
material system is highly sensitive to details of the subcycle
laser pulse shape. Traditional many-cycle pulses are param-
etrized as products of their envelope function and the carrier
wave frequency. However, to fully characterize the shape of
the electric field of a few-cycle laser pulse, one needs to specify
also the carrier-envelope (CE) or absolute phase of the pulse.
The latter, defined as the relative phase that the maximum of
the carrier wave has with respect to the pulse envelope, is the
crucial parameter to be stabilized in order to gain control over
the system dynamics.5

In the last couple of years fast progress in laser technology
has made it possible to determine the value of the absolute
phase6-8 and to achieve active control over it,9 hence paving
the way to applications in molecular dynamics.

Yet, rather few theoretical10 and virtually no experimental
studies11,12have addressed molecular dynamics in the few-cycle
pulse regime. State of the art quantum simulations have shown
that phase matching combinations of few-cycle infrared (IR)
and ultraviolet (UV) pulses are capable of breaking molecular
symmetry and achieving spatial separation of competing prod-
ucts of photodissociation.13,14Well-timed IR+UV combinations
have been used to excite large amplitude torsional motion on
the ground PES and subsequently to induce unidirectional
intramolecular rotation on the excited PES.15

Turning to few-cycle IR pulses, we have analyzed laser-driven
tunneling in model one- and two-dimensional systems and
proposed to control the motion by half-cycle pulses as alterna-
tives to the static electromagnetic field.16,17 Numerical simula-
tions indicated a transition from phase-insensitive to phase-
sensitive dynamics as the laser carrier frequency swept away
from resonance.18-20 However, an analytical understanding of
the onset of carrier envelope phase dependent dynamics has

been achieved only recently.21 By solving the time dependent
Schrödinger equation in the interaction representation via time
ordered exponentials, Uiberacker and Jakubetz were capable of
treating two limiting situations.21 One of them is the case when
the pulse carrier frequency is much larger than the system
transition frequency, and the population dynamics exhibited no
phase dependence. The opposite limit, when the carrier fre-
quency is much smaller than the system frequency, displayed
dependence of the final state population on the sign of the
electric field.

In this paper we consider the case when the pulse carrier
frequency approaches the system transition frequency. In ref
21 this intermediate case was treated as a combination of terms
arising from the two limiting cases. Jirauschek et al.22 found
that at resonance the phase-dependence of the population
dynamics emerges only in the nonlinear field regime, when the
pulse power spectrumE(ω) ) ∫-∞

∞ E(t)eiωt acquires CE phase
dependence. We have been also concerned with the population
inversion generated by sub-one-cycle pulse excitation23,24 and
primarily with changes occurring in the Rabi-type dynamics.
Specifically, we found a shortening of the Rabi inversion period
and proved that complete inversion is unobtainable under
resonant, ultrashort pulse condition.24 In the present contribution
we extend these findings to the control of large amplitude motion
with the goal of developing robust strategies for frequency-
driven population inversion in the terahertz spectral range. In
laser control the rule of the game is to make the transition as
fast as possible while retaining the maximum selectivity. In view
of this, sub-one-cycle THz laser pulses became natural tools
for laser control of large amplitude vibrations such as the
intramolecular H-transfer motion in acetylacetone treated in this
paper.

The rest of the paper is organized as follows: Section II
describes the interaction of material system with an ultrashort
laser pulse and extends optimal control theory into the sub-
one-cycle pulse domain. Section III summarizes the character-
istics of the model system. Results are presented in section IV.
First the landscape of the control area is investigated in section* Corresponding author e-mail: nadja.doslic@irb.hr.
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IVA, and then the dynamics underlying optimal control theory
is analyzed in section IVB. The final section contains the
conclusion.

II. Theoretical and Computational Background

Before proceeding with the implementation of optimal control
theory in the subcycle pulse limit it is useful to review some
technical issues of laser-matter interaction in the ultrashort
regime. In the length gauge the time dependent Schroedinger
equation describing the dynamics of a system with dipole
momentµ(rb) interacting with the electromagnetic field reads

whereH0(r ) is the unperturbed Hamiltonian of the system, and
A(t) is the vector potential of the form

The electric fieldE(t) is then given by

The first term in eq 3 corresponds to the ‘traditional’ radiation
pulse having a bell-shaped envelope functionm(t), a mono-
chromatic carrier wave of frequencyω, and a carrier envelope
phaseφ. For such a radiation pulse in a two-level system
characterized by a dipole matrix elementµ12, aπ-pulse defined
as

leads to complete population inversion. The second term,
containing the time derivative of the pulse envelope, is negligible
in the many-cycle pulse case where the slowly varying envelope
approximation is valid, but gains in importance, and actually
becomes comparable to the first term in the sub-one-cycle pulse
limit.

Following Brabec and Krausz1 we assumed a time-dependent
envelope functionm(t), centered att ) 0 of the form

whereR1/2 ) R ln(2 + x3) is the half width of the pulse at
half-maximum (HWHM). Experimentally 2R1/2 (FWHM) is
referred to as the pulse duration, but in numerical simulations
it is more convenient to define the pulse duration as the interval
outside which the electric field is effectively zero. Specifically
we have assumedT ) 2s0R with s0 ) 6.5. It is important to
notice that the envelope derivative term, which arises because
of the finite pulse duration, ensures the fulfillment of the zero-
net-force condition1,25,26

or, in other words, it guarantees that the electric field given in
eq 3 is a solution of the Maxwell equations in the propagation
region.

An ultrafast pulse can be characterized by the number of
carrier wave oscillation contained within the pulse width
measured at half the maximum6,18

In Figure 1 we display the time variation of the total electric
field of two ultrashort,nc ) 0.33 pulses with CEφ ) 0 (cosine-
pulse) andφ ) π (sine-pulse) together with the two field
components specified in eq 3. By comparing the total field form
with its ‘traditional’ form (dashed line) two effects can be
seen: First, in the ultrashort limit,φ ) π/2, 3π/2, 5π/2... pulses
acquire higher peak field strengths and, in general, have larger
fluence than correspondingφ ) 0, π, 2π... pulses

where mc ) nc/ln(2 + x3). Second, the inclusion of the
envelope function derivative term results in an effective increase
of the pulse frequency.24 This can be readily seen by comparing
the shape of the electric field around the pulse peaks. The effect
can be quantified by making use of eq 7 and by equating the
electric field of an ultrashort pulse at lower frequencyω - δ
to that of a ‘traditional’ pulse (first term in eq 3) at frequency
ω

The frequency shift is then easily obtained by expanding the
equation aroundt ) 0 and solving forδ

As it will be apparent shortly, the effective increase of the
pulse frequency is one of the key features of laser control in
the sub-one-cycle pulse domain.

To implement optimal control theory27-29 in the ultrashort
pulse limit, the zero-net-force condition (eq 6) has to be
enforced. For this purpose let us introduce the penalty factorλ0

which weighs the magnitude of the DC component. The
objective functional to be maximized is then

ip
∂

∂t
Ψ( rb, t) ) [H0( rb) +

µ( rb)
c

∂A(t)
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Figure 1. 0.33-cycle pulses with CE phasesφ ) 0 (left) andφ ) π/2
(right). The total electric field of the pulse (bold line) is compared with
its two components: the ‘traditional’ pulse consisting of an envelope
and cosine carrier field (dashed line) and the time derivative of the
pulse envelope with a sine carrier field (dotted line).
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whereψi(t) is the initial wave function,ε(t) is the optimal driving
field, andψf(t) is the Lagrange multiplier ensuring the satisfac-
tion of the Schro¨dinger equation. The system dependent
parameterR0 weighs the laser fluence, and the shape function
s(t) ensures a smooth switch on/off behavior of the field. The
condition for obtaining the extremum of the functionalJfi leads
to a standard set of differential equations for the wave function
and the Lagrange multiplier, while the optimal field is given
by

In the derivation of eq 13 the terms proportional to (δε(t))2

have been neglected. Hence memory effects, useful when
dealing with complex target states in the continuum, have not
been taken into account.30

Alternative strategies to deal with laser control in the few-
cycle pulse limit can be envisaged. For example, one may start
from the time dependent Schro¨dinger equation in the velocity
gauge and derive a system of equations in terms of the vector
potential. However, when facing bound-state problems the
present formulation appears to be more convenient.

II.1. Model System.The present work is concerned with laser
control of large amplitude nuclear motion in a multidimensional
quantum system. As a model system we have selected acety-
lacetone (ACAC), a prototype molecule for symmetric, intramo-
lecular hydrogen transfer. The potential energy and dipole
moment surface31 are constructed using three large amplitude
internal coordinates q given by

wherer1 is the distance from the hydrogen to the donor oxygen
atom, r2 is the distance from the hydrogen to the acceptor
oxygen atom, andθ is the OHO angle. In terms of (q1, q2, q3)
the molecular Hamiltonian reads

where the kinetic energy matrix elementsGrs are calculated as

and {xi} ≡ x is the corresponding set of 3N Cartesian
coordinates. While the computational details of the eigenspec-
trum are given in ref 31, we mention here that the lowest
eigenvalue of the system at 5.64 kcal mol-1 is energetically
above theC2V transition structure at 2.70 kcal mol-1, indicating
that tunneling plays no role in the H-transfer reaction in ACAC.
However, the double well symmetry of the PES induces splitting

of all vibrational levels. In our three dimensional model the
ground state splitting of ACAC isω(0+ r 0-) ) 3.5 THz. The
two lowest O-O stretching doublets exhibit larger splittings
of ω(1+ r 1-) ) 5.5 THz andω(2+ r 2-) ) 6.0 THz, while
the energy differences between the three lowest doublets are
ω(0- r 1+) ) 6.7 THz andω(1- r 2+) ) 5.8 THz. A
schematic representation of the lowest energy levels is given
in Figure 2 together with the more simple notation indicated
on the left of the scheme.

In the following a population inversion between the two
ground-state levels of ACAC is sought. Frequency-wise the
ground-state transition appears well separated from the adjacent
|2〉 r |1〉 transition at 6.7 THz. However, the inspection of the
dipole moment matrix elements reveals strong coupling between
adjacent doublets that may influence the selectivity of the
vibrational transition.

III. Results and Discussion

III.1. Analysis of State-Selective Population Transfer.
According to eq 7 a one-cycle pulse with carrier frequencyω
) 3.5 THz has a duration oftp ) 1869 fs. On this time scale
intramolecular vibrational energy redistribution is expected to
take place in ACAC, since the H-transfer mode is notoriously
strongly coupled to low-frequency modes of the molecular
framework.32 Hence, we first investigate the laser control area
by third-of-cycle pulses. The final population of the|1〉 state
obtained by scanning the amplitude and carrier wave frequency
of the electric field is shown in Figure 3. The images have been
obtained by fixing the absolute phase of the laser pulse toφ )
0 andφ ) π on the left panel and toφ ) π/2 andφ ) 3π/2 on
the right one. To allow for vibrational wave packet formation
at high field strengths, eq 1 has been solved in the basis of the
lower 50 eigenstates of the system. Altogether 7500 simulations
have been performed for each of the four CE phases in the range
0 e E0 e 0.003 IA and 0.6e ω e 4.8 THz. As can be inferred
from Figure 3, however, the strong phase sensitivity character-
istic for wave packet driven reactions has not been found in
ACAC. On the contrary, the control landscape can be quite well
rationalized in terms of a vibrational progression in a N-level
system.

Two control areas can be readily identified. In the first one,
spanned by 1.5< ω < 3.0 THz and 0.00025< E0 < 0.00060
IA, a control yield close to 90% is achieved. Forφ ) 0 andφ

) π peak populations ofP1 ) 0.89 are obtained atω ) 2.1
THz andE0 ) 0.00042. The corresponding population dynamics

Jfi ) |〈ψi(T)|φf (T)〉|2 - R0∫0

T|ε(t)|2
s(t)

dt - λ0∫0

T
ε(t)dt (11)

- 2Re[〈ψi(T)|φf (T)〉∫0

T
〈ψf (t)| ∂∂t

+ i[H0 - µε(t)]|ψi(t)〉dt]
(12)

ε(t) ) -
s(t)
R0

[Im〈ψi(t)|φf (t)〉〈ψf (t)|µ|ψi(t)〉 + λ0] (13)

q1 ) r1 + r2

q2 ) r2 - r2

q3 ) θ (14)

Ĥ0 ) -
p2

2
∑
r)1

M

∑
s)1

M ∂

∂qr
[Grs ∂

∂qs
] + V(q1, q2, q3) (15)
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i)1

3N 1
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∂xi

∂qs

∂xi

(16)

Figure 2. Schematic 1D cut through the 3D PES of ACAC. The
eigenvalues of the lowest 10 states of the 3D surface are indicated by
horizontal bars. The lowest eigenvalue|0〉 is above theC2V structure at
2.7 kcal mol-1.
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corresponds to a Rabi-type transition between states|0〉 and|1〉
with population leaking to|2〉. As explained in section II,
because of the rapid onset of the field a 0.33-cycle pulse acquires
an effective frequency that is higher than its carrier wave
frequency. Hence a 0.33-cycle pulse with carrier frequencyω
) ω01 - δ is effectively in resonance with the|1〉 r |0〉
transition at ω01. According to eq 10, the frequency shift
amounts toδ ) 1.15 THz. The generalizedπ-pulse condition
is, therefore, satisfied by a pulse with frequency ofω ) 2.3
THz that turns out to be in good agreement with the obtained
numerical value ofω ) 2.1 THz. We note, however, that the
frequency of the maximum efficiency pulse has been further
shifted to the red because of the target state being the middle
state in aI-type three-level system.33

Comparing the behavior of extreme cosine (φ ) 0, π) and
sine (φ ) π/2, 3π/2) pulses one notices that sine-pulses achieve
maximum population transfer at lower field strength. Specifi-
cally, the highest control yield is obtained atE0 ) -0.00034
IA andω ) 72.2. The effect is a consequence of the CE phase
dependence of the pulse fluence given in eq 8.

Let us now investigate the dynamics in the second control
area spanned by 0.6< ω < 1.5 THz and 0.001< E0 < 0.003
IA. Immediately, a high sensitivity of the target state population
with respect to the pulse parameters is observed. Efficient control
is restricted to narrow parameters islands. Figure 4 displays the
population dynamics of the lowest five vibrational states driven
by a top-efficiency pulse with parametersω ) 1.2 THz,E0 )
-0.00151 IA, andφ ) 0. Although at the end of the pulse the

population of the target state reachesP1 ) 0.87, during the
interaction with the laser pulses high lying vibrational states
are populated with peaks aboveP2 ) 0.3. This larger number
of states involved in the control gives rise to a pronounced phase
sensitivity, as can be seen by comparing the respective areas
on the left and right panel. Also, in this regime a switch from
phase insensitive frequency-driven transitions to phase sensitive
dipole-driven transitions is expected to occur. However, because
of the imposed zero-net-force condition and the asymmetry of
the x-component of the ACAC dipole moment the final
populations are symmetric with respect to changes of the CE
phase byπ. These strong field control areas are clearly less
suitable for laser control, but their analysis may turn out useful
in experimental feedback control. Specifically, a control mech-
anism involving high lying vibrational states would be charac-
terized by the variation of the feedback field with respect to
the initial guess, with the instability of the control yield with
respect to small variation in field parameters and with the
requirement for high field strengths.

By fixing the number of carrier wave oscillations tonc )
0.33 we have allowed changes in the pulse duration. For
example, a pulse with carrier wave frequencyω ) 1.2 THz
has a duration of 1355 fs, while a pulse with frequencyω )
4.8 THz has a duration of only 338 fs. However, in a typical
optimal control simulation the pulse duration is fixed, whereas
no restriction on the number of oscillations of the carrier is
imposed. In Figure 5 the pulse duration has been fixed at 750
fs, and the variation of the target state population with respect
to the carrier frequency and intensity for four CE phases is
shown. The duration of the pulses corresponds to that of a top-
efficiencync ) 0.33 pulse with frequencyω ) 72.2 (see Figure
3). To facilitate comparison between different pulses the width
of the time-dependent envelope function was kept constant. With
that restriction, low-frequency pulses withω < 1.2 THz do not
meet the numerical threshold of the zero net-force condition
(eq 6) and were not displayed. Clearly, the position and contrast
of the peaks depend on the absolute phase. The cosine-pulse (φ

) 0,π) driven dynamics, shown on the left, present a broad,
frequency insensitive area of high yield control. Because of the
coincidence between the envelope and carrier wave maxima the
shape of the pulse is governed by the envelope function and is
less sensitive on the carrier wave frequency. On the contrary,
the carrier frequency is a more important control parameter for
sine-type pulses. Since the|1〉 r |0〉 population transfer
efficiency is dependent on the carrier wave frequency, two-
lobe pulses appear more suitable for laser control purposes.
Namely, they can be more easily modified and possibly
improved by frequency chirping.

Figure 3. Target state population at the end of anc ) 0.33 pulse excitation. The variation of the final population is shown as a function of the
electric field strength and carrier frequency. The CE phases areφ ) π, 0 (left) andφ ) 3π/2, π/2 (right).

Figure 4. Top: electric field of annc ) 0.33 pulse with sech-type
envelope,ω ) 1.2 THz,E0 ) 0.00015 IA, andφ ) 0. Bottom: time-
resolved population of the lowest four states.P0 (solid, thin),P1 (dotted,
thin), P2 (solid, bold), andP3 (dotted, bold).

Control of State-Selective Population Transfer J. Phys. Chem. A, Vol. 110, No. 45, 200612403



III.2. Optimal Control Theory Results. In the previous
section quite large population transfer yields for the ground-
state inversion in ACAC have been achieved by using simple
pulses. Therefore, the improvement via optimal control is
expected to occur by subtle changes of the simple Rabi-type
dynamics. Accordingly, in our optimal control simulations the
penalty factorR was kept quite hight (100-400) in order to
avoid multiple population transfers between the initial and target
state.

Figure 6 shows a number of highly efficient (P1 > 0.96)
pulses in the range between 450e tp e 1100 fs obtained by
using our zero-net force variant of optimal control theory. The
threshold for the DC field component was set to 0.1. A striking
similarity among the pulses is readily observed. All pulses are
characterized by the same absolute phase ofφ ) π/2 and by an
increase of the frequency in the second lobe of the pulse.
Actually, the pulse appears as a superposition of two pulses: a
longer pulse with CE phaseφ ) π/2, and a monochromatic
carrier, and a much shorter pulse centered at around the
minimum of the second lobe.

The analysis of the population dynamics helps in deciphering
the optimal control mechanism. Figure 7 (top) displays three
pulses with durationtpulse) 750 fs and CE phaseφ ) π/2. The
corresponding population evolution curves for the target state
|1〉 and for the strongly coupled state|2〉 are shown on the lower
panel. The simple pulse (solid, thin) with parametersnc ) 0.33,
ω ) 2.2 THz,E0 ) 0.00034 achieves a target state population
of P1 ) 0.89, while the remaining population is mostly located
in |2〉 with P2 ) 0.09. Actually, this simple pulse is the most
effective generalizedπ-pulse lying in the middle of the Rabi-
type control area shown in Figure 3. The optimal control pulse
(solid, bold) achieves a target state population ofP1 ) 0.98.

Although both pulses have comparableP2 populations at 450
fs, at the end of the optimal control pulse the population of|2〉
is successfully driven back to the target state. The effect is
obviously caused by the peculiar shape of the second lobe. To
investigate this possibility we constructed the following com-
pound pulse. The first third-of-cycle pulse withω ) 2.3 THz
andE0 ) 0.00037 IA matches well the first lobe of the optimal
control pulse (see Figure 7). At 450 fs, i.e., at the time when
the background-state reaches its maximum, we place the second
nc ) 0.33 pulse withφ ) π/2 andω2 ) 4.5 THz. The carrier
frequency of the second pulse is effectively in resonance with
the |2〉 r |1〉 transition at 6.7 THz, but the frequency has been
corrected to compensate for its ultrashort duration according to
eq 10. The corresponding pulse and population dynamics are
shown by dotted lines.

Clearly, the two pulses superposition is very efficient and
triggers a population dynamics similar to the one obtained by
the OCT pulse. The role of the second pulse, which on the fly
corrects for the leaking to|2〉, is essential for obtaining a large
control yield. It is worth noticing that the electric field strength
of the second pulse was the only parameter optimized numeri-
cally.

Finally, let us make a detour into the multicycle pulse
dynamics and discuss some strategies for laser control of state-

Figure 5. Target state population at the end of a 750 fs pulse excitation. The variation of the final population is shown as a function of the electric
field strength and carrier frequency. The CE phases areφ ) π, 0 (left) andφ ) 3π/2, π/2 (right).

Figure 6. Near-invariance of the optimal control theory pulses. Time
variation of the electric field for several pulses with duration 450e T
e 1050 fs.

Figure 7. Top: Superposition of three control pulses with sech-type
envelope and duration of 750 fs. Monochromaticnc ) 0.33 pulse with
ω ) 2.2 THz, E0 ) 0.00034 IA (solid, thin). Optimal control theory
pulse (solid, bold). Compound pulse (dotted) obtained as a superposition
of two pulses with parameters:nc

(1) ) 0.33,ω(1) ) 2.3 THz,E0
(1) )

0.00037 IA, nc
(2) ) 0.33,ω(2) ) 4.5 THz,E0

(2) ) 0.00025 IA. The center
of the second pulse is at 450 fs. Bottom: the corresponding time-
resolved populations of the target state|1〉 and the background state
|2〉.
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selective population transfer. Recently, Etinski et al.34 have
proposed a control strategy in which a superposition of pulses
successfully removes leaking to the strongly coupled background
state. Apart from the main resonantπ pulse, an additional pulse
with a numerically optimized envelope function displaying two
maxima, and frequency close to the energy difference between
the target and intruder state, acts on the system. The timing of
the auxiliary pulse coincides approximately with the onset of
the background state population. Details of the underlying
mechanism are not completely clear because of the multicycle
nature of the employed pulses. However, it turns out that the
approach of Etinski et al.34 is a variant of the counterdiabatic
strategy of Demirplak and Rice35 based solely on the analysis
of the background-state population dynamics. The presented
optimal control results and the twoπ-pulses mechanism appear
as counterparts of these strategies in the sub-one-cycle pulse
regime.

IV. Conclusion

This work investigates strategies for laser control in the
terahertz spectral range. It deals with the large amplitude
H-transfer motion in ACAC, but it is our belief that the results
are general and applicable to any system whose dynamics calls
for control in the sub-one-cycle pulse domain. In particular, the
zero-net-force condition imposed on the electric filed, i.e., the
definition of the electric field via its vector potential, provides
a reliable framework for analyzing laser-matter interaction in
the ultrashort pulse limit. In addition, we developed a zero-net-
force modification of the optimal control theory algorithm which
allows us to effectively control the dynamics in that limit.

The presented results demonstrate that sub-one-cycle pulses
can achieve high control yields in state-selective population
transfer. This conclusion is valid in both the weak field limit
where Rabi-type population transfer occurs and in the strong
field limit. The latter mechanism involves multiple population
transfer between the initial and the target state as well as
population of high-lying vibrational states. It is therefore
restricted to narrow areas of laser field parameters. This
sensitivity of laser control in the strong field regime is reflected
in the optimal control theory results. Namely, the optimal control
theory algorithm allows large changes of the electric field from
one iteration to another and preferentially converges in the large
area of pulse parameters approximately fulfilling the generalized
π-pulse condition. Consequently, the laser pulses obtained in
OCT simulations are effective, robust, and applicable in a time-
window of more than 500 fs.

Moreover, by combining the information contained in the
analysis of the control landscape and that revealed by optimal
control, we were able to decipher a more general laser control
mechanism acting in the ultrashort pulse regime. The strategy
consists of superimposing twoπ-pulses with CE phases ofφ )
π/2. The first one is resonant with the targeted transition, while
the second one, fired at around the minimum of the second lobe,
removes leaking to the most strongly coupled intruder state.

Of course, the carrier frequency of both pulses must be red-
shifted from resonance to compensate for their ultrashort
duration.
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(20) Tatić, I.; Došlić, N. Croat. Chem. Acta2004, 77, 83.
(21) Uiberacker, C.; Jakubetz, W.J. Chem. Phys.2006, in press.
(22) Jirauschek, Ch.; Duan, L.; Mu¨cke, O. D.; Kärtner, F. X.; Wegener,
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